Termostable and effective immobilized invertase for sucrose determination in fruit juices

In this study, immobilization of invertase enzyme was performed on a previously synthesized and characterized poly(N-vinylpyrrolidone-co-butylacrylate-co-N hydroxymethylacrylamide) terpolymer membranes by covalent bonding method. Glutaraldehyde(GA) was used as the crosslinker and Bovine Serum Albumin(BSA) was used as the binding agent. Optimum pH, temperature, amount of polymer, substrate concentration, amount of BSA and amount of GA values were determined for both free and immobilized enzyme. Optimum pH and temperature values were found as pH = 5.0, T = 55 °C, pH = 7.0 and T = 80 °C for free and immobilized enzyme, respectively. In particular, the optimum temperature of 80 °C for the immobilized enzyme provides its potential to be used commercially. The kinetic parameters of the free enzyme and the immobilized enzyme were determined using the well known Lineweaver-Burk method. The Vmax values for free (13.4 μM/min) and immobilized enzyme (12.2 μM/min) were found as close to each other, while the Km value of the immobilized enzyme (8.33 mM) was much lower than that of the free enzyme (29.41 mM). In reuse studies conducted with peach and orange juices, it was determined that the immobilized enzyme retained approximately 90% of its activity even after 30 reuses within 1 month.PMID:38522812 | DOI:10.1016/j.ab.2024.115515
Source: Analytical Biochemistry - Category: Biochemistry Authors: Source Type: research
More News: Biochemistry | Fruit | Peaches | Study