Enhanced ε‑poly‑L‑lysine production in Streptomyces species by combining interspecific hybridization with multiple antibiotic resistance

Bioprocess Biosyst Eng. 2024 Mar 19. doi: 10.1007/s00449-024-02983-9. Online ahead of print.ABSTRACTTo improve the ε-PL production in wild-type strains of Streptomyces. albulus, Streptomyces. noursei, Streptomyces. rochei and Streptomyces. yunnanensis, the interspecific hybridization based on protoplast fusion was first performed. Two-species hybridizations failed to obtain hybrids with significant increase in ε-PL production, but four-species hybridizations succeed in acquiring many high-yield hybrids. 16S rDNA homology alignment and RAPD confirmed that the hybrid HX17 was restructured by integrating gene fragments from S. albulus and S. rochei with S. noursei as the carrier. S. noursei HX17 was subsequently suffered from mutagenesis and genome shuffling combining with multiple antibiotic resistance, and a mutant S. noursei GX6 was obtained with ε-PL yield of 2.23 g/L in shake-flask fermentation. In fed-batch fermentation, the ε-PL production of GX6 reached 47.2 g/L, which was increased by 95.6% to 136.8% over the wild parents. Ribosomal genes associated with antibiotics were sequenced and majority of mutant strains had mutations at different sites, indicating that the increase of antibiotic resistance was strongly associated with them. This research proved that combining interspecific hybridization with multiple antibiotic resistance was as an effective approach to rapidly improve the ε-PL production in Streptomyces species.PMID:38499687 | DOI:10.1007/s00449-024-02983-...
Source: Bioprocess and Biosystems Engineering - Category: Biomedical Engineering Authors: Source Type: research