HNF1A induces glioblastoma by upregulating EPS8 and activating PI3K/AKT signaling pathway

Biochem Pharmacol. 2024 Mar 15:116133. doi: 10.1016/j.bcp.2024.116133. Online ahead of print.ABSTRACTDespite the exact biological role of HNF1 homolog A (HNF1A) in the regulatory mechanism of glioblastoma (GBM), the molecular mechanism, especially the downstream regulation as a transcription factor, remains to be further elucidated. Immunohistochemistry was used to detect the expression and clinical relevance of HNF1A in GBM patients. CCK8, TUNEL, and subcutaneous tumor formation in nude mice were used to evaluate the effect of HNF1A on GBM in vitro and in vivo. The correction between HNF1A and epidermal growth factor receptor pathway substrate 8 (EPS8) was illustrated by bioinformatics analysis and luciferase assay. Further mechanism was explored that the transcription factor HNF1A regulated the expression of EPS8 and downstream signaling pathways by directly binding to the promoter region of EPS8. Our comprehensive analysis of clinical samples in this study showed that upregulated expression of HNF1A was associated with poor survival in GBM patients. Further, we found that knockdown of HNF1A markedly suppressed the malignant phenotype of GBM cells in vivo and in vitro as well as promoted apoptosis of tumor cells, which was reversed by upregulation of HNF1A. Mechanistically, HNF1A could significantly activate PI3K/AKT signaling pathway by specifically binding to the promoter regions of EPS8. Moreover, overexpression of EPS8 was able to reverse the apoptosis of tumor cells ca...
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Source Type: research