On the uncertainty quantification of the active uterine contraction during the second stage of labor simulation

AbstractUterine contractions in the myometrium occur at multiple scales, spanning both organ and cellular levels. This complex biological process plays an essential role in the fetus delivery during the second stage of labor. Several finite element models of active uterine contractions have already been developed to simulate the descent of the fetus through the birth canal. However, the developed models suffer severe reliability issues due to the uncertain parameters. In this context, the present study aimed to perform the uncertainty quantification (UQ) of the active uterine contraction simulation to advance our understanding of pregnancy mechanisms with more reliable indicators. A uterus model with and without fetus was developed integrating a transversely isotropic Mooney-Rivlin material with two distinct fiber orientation architectures. Different contraction patterns with complex boundary conditions were designed and applied. A global sensitivity study was performed to select the most valuable parameters for the uncertainty quantification (UQ) process using a copula-based Monte Carlo method. As results, four critical material parameters (\({C}_{1},{C}_{2}, K, {Ca}_{0}\)) of the active uterine contraction model were identified and used for the UQ process. The stress distribution on the uterus during the fetus descent, considering first and second fiber orientation families, ranged from 0.144 to 1.234  MPa and 0.044 to 1.619 MPa, respectively. The simulation outcomes reve...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research