WDR83/MORG1 inhibits RRAG GTPase-MTORC1 signaling to facilitate basal autophagy

Autophagy. 2024 Mar 7:1-2. doi: 10.1080/15548627.2024.2322457. Online ahead of print.ABSTRACTMacroautophagy/autophagy is a conserved lysosomal degradation process composed of both selective and nonselective degradation pathways. The latter occurs upon nutrient depletion. Selective autophagy exerts quality control of damaged organelles and macromolecules and is going on also under nutrient-replete conditions. Proper regulation of autophagy is vital for cellular homeostasis and prevention of disease. During nutrient availability, autophagy is inhibited by the MTORC1 signaling pathway. However, selective, basal autophagy occurs continuously. How the MTORC1 pathway is fine-tuned to facilitate basal constitutive autophagy is unclear. Recently, we identified the WD-domain repeat protein WDR83/MORG1 as a negative regulator of MTORC1 signaling allowing basal, selective autophagy. WDR83 interacts with both the Ragulator and active RRAG GTPases to prevent recruitment of the MTORC1 complex to the lysosome. Consequently, WDR83 depletion leads to hyperactivation of the MTORC1 pathway and a strong decrease in basal autophagy. As a consequence of WDR83 depletion cell proliferation and migration increase and low levels of WDR83 mRNA are correlated with poor prognosis for several cancers.PMID:38450633 | DOI:10.1080/15548627.2024.2322457
Source: Autophagy - Category: Cytology Authors: Source Type: research