< em > Polycladomyces zharkentensis < /em > sp. nov., a novel thermophilic cellulose- and starch-degrading member of the < em > Bacillota < /em > from a geothermal aquifer in Kazakhstan

Int J Syst Evol Microbiol. 2024 Feb;74(2). doi: 10.1099/ijsem.0.006269.ABSTRACTA thermophilic, aerobic and heterotrophic filamentous bacterium, designated strain ZKZ2T, was isolated from a pipeline producing hydrothermal water originating from a >2.3 km deep subsurface geothermal source in Zharkent, Almaty region, Kazakhstan. The isolate was Gram-stain-positive, non-motile, heat-resistant and capable of producing a variety of extracellular hydrolases. Growth occurred at temperatures between 55 and 75 °C, with an optimum around 70 °C, and at pH values between 5.5 and 9.0, with an optimum at pH 7.0-7.5 with the formation of aerial mycelia; endospores were produced along the aerial mycelium. The isolate was able to utilize the following substrates for growth: glycerol, l-arabinose, ribose, d-xylose, d-glucose, d-fructose, d-mannose, rhamnose, d-mannitol, methyl-d-glucopyranoside, aesculin, salicin, cellobiose, maltose, melibiose, sucrose, trehalose, melezitose, raffinose, starch, turanose and 5-keto-gluconate. Furthermore, it was able to hydrolyse carboxymethylcellulose, starch, skimmed milk, Tween 60 and Tween 80. The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0, iso-C16 : 0 and C16 : 0. Our 16S rRNA gene sequence analysis placed ZKZ2T within the genus Polycladomyces, family Thermoactinomycetaceae, with the highest similarity to the type species Polycladomyces abyssicola JIR-001T (99.18 % sequence identity). Our draft genome sequence analysis revealed a genome ...
Source: International Journal of Systematic and Evolutionary Microbiology - Category: Microbiology Authors: Source Type: research