Genes and Pathways Underpinning Klinefelter Syndrome at Bulk and Single-Cell Levels

Biochem Genet. 2024 Feb 19. doi: 10.1007/s10528-024-10689-6. Online ahead of print.ABSTRACTKlinefelter syndrome (KS) is the most frequent genetic anomaly in infertile men. Given its unclear mechanism, we aim to investigate critical genes and pathways in the pathogenesis of KS based on three bulk and one single-cell transcriptome data sets from Gene Expression Omnibus. We merged two data sets (GSE42331 and GSE47584) with human KS whole blood samples. When comparing the control and KS samples, five hub genes, including defensin alpha 4 (DEFA4), bactericidal permeability increasing protein (BPI), myeloperoxidase (MPO), intelectin 1 (ITLN1), and Xg Glycoprotein (XG), were identified. Besides, infiltrated degree of certain immune cells such as CD56bright NK cell were positively associated with the expression of ITLN1 and XG. Kyoto Encyclopedia of Genes and Genomes analysis identified upregulated phosphatidylinositol 3-kinase (PI3K)/AKT pathway in KS. Gene set enrichment analysis followed by gene set variation analysis confirmed the upregulation of G2M checkpoint and heme metabolism in KS. Thereafter, the GSE200680 data set was used for external validation of the expression variation of hub genes from healthy to KS testicular samples, and each hub gene yielded excellent discriminatory capability for KS without exception. At the single-cell level, the GSE136353 data set was utilized to evaluate intercellular communication between different cell types in KS patient, and strong correl...
Source: Biochemical Genetics - Category: Genetics & Stem Cells Authors: Source Type: research