Molnupiravir inhibits human norovirus and rotavirus replication in 3D human intestinal enteroids

Antiviral Res. 2024 Feb 17:105839. doi: 10.1016/j.antiviral.2024.105839. Online ahead of print.ABSTRACTHuman norovirus (HuNoV) and human rotavirus (HRV) are the leading causes of gastrointestinal diarrhea. There are no approved antivirals and rotavirus vaccines are insufficient to cease HRV associated mortality. Furthermore, treatment of chronically infected immunocompromised patients is limited to off-label compassionate use of repurposed antivirals with limited efficacy, highlighting the urgent need of potent and specific antivirals for HuNoV and HRV. Recently, a major breakthrough in the in vitro cultivation of HuNoV and HRV derived from the use of human intestinal enteroids (HIEs). The replication of multiple circulating HuNoV and HRV genotypes can finally be studied and both in the same non-transformed and physiologically relevant model. Activity of previously described anti-norovirus or anti-rotavirus drugs, such as 2'-C-methylcytidine (2CMC), 7-deaza-2'-C-methyladenosine (7DMA), nitazoxanide, favipiravir and dasabuvir, was assessed against clinically relevant human genotypes using 3D-HIEs. 2CMC showed the best activity against HuNoV GII.4, while 7DMA was the most potent antiviral against HRV. We identified the anti-norovirus and -rotavirus activity of molnupiravir and its active metabolite, N4-hydroxycytidine (NHC), a broad-spectrum antiviral used to treat coronavirus disease 2019 (COVID-19). Molnupiravir and NHC inhibit HuNoV GII.4, HRV G1P[8], G2P[4] and G4P[6] in 3D...
Source: Antiviral Research - Category: Virology Authors: Source Type: research