Optimizing the dewatering performance of zinc smelting iron Slag: Investigating the influence of ultrasonic Time, ultrasonic Power, and Liquid-Solid ratio using response surface methodology

This study explores a novel ultrasonic pretreatment process for iron slag. Using the response surface methodology, we investigated the effects of ultrasonic power, ultrasonic time, liquid-to-solid ratio, and their interactions on the water content, capillary suction time (CST), and filtration resistance of the slag. Regression equations were established to predict the relationships between the water content, CST, filtration resistance, and the various factors. The optimal process parameters were determined as an ultrasonic power of 60 W, ultrasonic time of 22 s, and a liquid-to-solid ratio of 4:1. Under these conditions, the dehydration performance of the iron slag was optimal. The measured values closely matched the predicted values, demonstrating the reliability of the model and the feasibility of the optimized process. Our study of the mechanism of ultrasonic action on iron slag found that under the influence of ultrasonic waves, the particle size of the slag significantly decreased, and the particle morphology changed. Compared to conventional drying, the drying rate of the iron slag after ultrasonic pretreatment was accelerated, and the drying time was reduced.PMID:38364487 | DOI:10.1016/j.ultsonch.2024.106797
Source: Ultrasonics Sonochemistry - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Iron | Study | Zinc