Reinforcement hybridization in staggered composites enhances wave attenuation performance

In this study, we develop the hybrid dynamic shear-lag model with Bloch's theorem to investigate the hybrid effect of reinforcement on wave attenuation in bioinspired staggered composites. We present for the first time the relationship between macroscopic wave filtering and hybridization of building blocks in staggered composites. Viscoelasticity was taken into account for both reinforcement and matrix to reflect the damping effect on wave transmission. Our findings indicate that reinforcement hybridization significantly enhances wave attenuation performance through two critical parameters: the linear stiffness and linear density of reinforcements. For purely elastic constituents, reinforcement hybridization consistently improves wave attenuation by reducing the initial frequency of the first bandgap and broadening it. For viscoelastic constituents, increasing the heterogeneity of reinforcements can benefit wave attenuation, particularly in ultralow frequency regimes, due to the strengthening of the damping effect. Our case study demonstrates that controlling the difference in linear density can result in up to a 59 % reduction in energy transmission. Our analysis suggests that hybridizing reinforcements could provide a new approach to designing and synthesizing advanced composites with exceptional wave attenuation performance.PMID:38340479 | DOI:10.1016/j.jmbbm.2024.106435
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Source Type: research