Ruxolitinib attenuates microglial inflammatory response by inhibiting NF- κB/MAPK signaling pathway

Eur J Pharmacol. 2024 Feb 12:176403. doi: 10.1016/j.ejphar.2024.176403. Online ahead of print.ABSTRACTNeuroinflammation is involved in the physiological and pathological processes of numerous neurological diseases, and its inhibition seems to be a promising therapeutic direction for these diseases. Ruxolitinib is a classical Janus kinase (JAK) inhibitor that is oral, highly potent and bioavailable, which has recently gained approval from the US Food and Drug Administration (FDA) for the treatment of inflammatory disorders. The potential inhibitory effect of ruxolitinib on neuroinflammation has not been fully studied. In the lipopolysaccharide (LPS) induced neuroinflammatory cell model, we observed that ruxolitinib reduced the levels of IL-1β, IL-6 and tumor necrosis factor-α (TNF-α) expression, and neuroinflammation by inhibiting the Mitogen-Activated Protein Kinase/Nuclear factor-κ B (MAPK/NF-κB) signaling pathway. Similarly, mice injected intracerebroventricular with ruxolitinib exhibited significantly reduced LPS-stimulated activation of microglia and astrocytes, and expression of proinflammatory cytokine IL-1β, TNF-α and IL-6. These results demonstrate that ruxolitinib attenuates the neuroinflammatory responses both in vivo and in vitro, at least in part by inhibiting MAPK/NF-κB signaling pathway. Our findings suggest that ruxolitinib may serve as a potential drug for the treatment of microglia-mediated neuroinflammation.PMID:38354846 | DOI:10.1016/j.ejphar.2024.1...
Source: European Journal of Pharmacology - Category: Drugs & Pharmacology Authors: Source Type: research