How well does your e-nose detect cancer? Application of artificial breath analysis for performance assessment

Comparing electronic nose (e-nose) performance is a challenging task because of a lack of standardised method. This paper proposes a method for defining and quantifying an indicator of the effectiveness of multi-sensor systems in detecting cancers by artificial breath analysis. To build this method, an evaluation of the performances of an array of metal oxide sensors built for use as a lung cancer screening tool was conducted. Breath from 20 healthy volunteers has been sampled in fluorinated ethylene propylene sampling bags. These healthy samples were analysed with and without the addition of nine volatile organic compound (VOC) cancer biomarkers, chosen from literature. The concentration of the VOC added was done in increasing amounts. The more VOC were added, the better the discrimination between ‘healthy’ samples (breath without additives) and ‘cancer’ samples (breath with additives) was. By determining at which level of concentration the e-nose fails to reliably discriminate between the two groups, we estimate its ability to well predict the presence of the disease or not in a real istic situation. In this work, a home-made e-nose is put to the test. The results underline that the biomarkers need to be about 5.3 times higher in concentration than in real breath for the home-made nose to tell the difference between groups with a sufficient confidence.
Source: Journal of Breath Research - Category: Respiratory Medicine Authors: Source Type: research