Development of an in-line Raman analytical method for commercial-scale CHO cell culture process monitoring: Influence of measurement channels and batch number on model performance

In this study, an in-line Raman analytical method was developed for monitoring glucose, lactate, and viable cell density (VCD) in the Chinese hamster ovary (CHO) cell culture process during commercial production of biosimilar adalimumab (1500 L). The influence of different Raman measurement channels was considered to determine whether to merge data from different channels for model development. Raman calibration models were developed and optimized, with minimum root mean square error of prediction of 0.22 g L-1 for glucose in the range of 1.66-3.53 g L-1 , 0.08 g L-1 for lactate in the range of 0.15-1.19 g L-1 , 0.31 E6 cells mL-1 for VCD in the range of 0.96-5.68 E6 cells mL-1 on test sets. The developed analytical method can be used for cell culture process monitoring during manufacturing and meets the analytical purpose of this study. Further, the influence of the number of batches used for model calibration on model performance was also studied to determine how many batches are needed basically for method development. The proposed Raman analytical method development strategy and considerations will be useful for monitoring of similar bioprocesses.PMID:38180295 | DOI:10.1002/biot.202300395
Source: Biotechnology Journal - Category: Biotechnology Authors: Source Type: research