Adaptive foraging of pollinators fosters gradual tipping under resource competition and rapid environmental change

by Sjoerd Terpstra, Fl ávia M. D. Marquitti, Vítor V. Vasconcelos Plant and pollinator communities are vital for transnational food chains. Like many natural systems, they are affected by global change: rapidly deteriorating conditions threaten their numbers. Previous theoretical studies identified the potential for community-wide collapse above critical levels of environmental stressors —so-called bifurcation-induced tipping points. Fortunately, even as conditions deteriorate, individuals have some adaptive capacity, potentially increasing the boundary for a safe operating space where changes in ecological processes are reversible. Our study considers this adaptive capacity of po llinators to resource availability and identifies a new threat to disturbed pollinator communities. We model the adaptive foraging of pollinators in changing environments. Pollinator’s adaptive foraging alters the dynamical responses of species, to the advantage of some—typically generalists—a nd the disadvantage of others, with systematic non-linear and non-monotonic effects on the abundance of particular species. We show that, in addition to the extent of environmental stress, the pace of change of environmental stress can also lead to the early collapse of both adaptive and nonadaptive pollinator communities. Specifically, perturbed communities exhibit rate-induced tipping points at stress levels within the safe boundary defined for constant stressors. With adaptive foraging, tipping i...
Source: PLoS Computational Biology - Category: Biology Authors: Source Type: research