Mechanical properties change of immobilized skeletal muscle in short position measured by shear wave elastography and pure shearing test

J Mech Behav Biomed Mater. 2023 Dec 15;150:106317. doi: 10.1016/j.jmbbm.2023.106317. Online ahead of print.ABSTRACTThe purpose of this study was to evaluate the effects of immobilization on mechanical properties of skeletal muscle over the time. An in vivo rat model was used to investigate the shear modulus change of the flexor carpi ulnaris (FCU) in a short position. Measurements were performed by shear wave elastography (SWE) to compare contralateral and immobilized cases. The results showed a significant increase of 18.1% (p = 3.86. 10-7) in the shear modulus of immobilized skeletal muscle after two weeks (D14) when compared with the contralateral case. For the purposes of comparison, in vitro mechanical pure shearing tests were performed on samples collected from the skeletal muscles of the same rats. Although the difference between contralateral and immobilized cases was 17.6% (p = 0.32) at D14, the shear modulus difference was 35.7% (p = 0.0126 and p = 1.57.10-5 for immobilization and contralateral respectively) between in vivo and in vitro approaches. The mechanical properties changes were then correlated with the density of collagen from histological analysis, and it was shown that the contralateral collagen surface density was 25.4% higher than the immobilized density at D14 (p = 0.001). Thus, the results showed the feasibility of the comparison between the two approaches, which can surely be improved by optimizing the experimental protocols.PMID:38118374 | DOI:10.10...
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Source Type: research