Deep Unsupervised Representation Learning for Feature-Informed EEG Domain Extraction

This study proposes a novel inference model, the Joint Embedding Variational Autoencoder, that offers conditionally tighter approximation of the estimated spatiotemporal feature distribution through the use of jointly optimised variational autoencoders to achieve optimizable data dependent inputs as an additional variable for improved overall model optimisation and scaling without sacrificing model tightness. To learn the variational bound, we show that maximising the marginal log-likelihood of only the second embedding section is required to achieve conditionally tighter lower bounds. Furthermore, we show that this model provides state-of-the-art EEG data reconstruction and deep feature extraction. The extracted domains of the EEG signals across each subject displays the rationale as to why there exists disparity between subjects’ adaptation efficacy.
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research