Breast Fibroglandular Tissue Segmentation for Automated BPE Quantification With Iterative Cycle-Consistent Semi-Supervised Learning

Background Parenchymal Enhancement (BPE) quantification in Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) plays a pivotal role in clinical breast cancer diagnosis and prognosis. However, the emerging deep learning-based breast fibroglandular tissue segmentation, a crucial step in automated BPE quantification, often suffers from limited training samples with accurate annotations. To address this challenge, we propose a novel iterative cycle-consistent semi-supervised framework to leverage segmentation performance by using a large amount of paired pre-/post-contrast images without annotations. Specifically, we design the reconstruction network, cascaded with the segmentation network, to learn a mapping from the pre-contrast images and segmentation predictions to the post-contrast images. Thus, we can implicitly use the reconstruction task to explore the inter-relationship between these two-phase images, which in return guides the segmentation task. Moreover, the reconstructed post-contrast images across multiple auto-context modeling-based iterations can be viewed as new augmentations, facilitating cycle-consistent constraints across each segmentation output. Extensive experiments on two datasets with various data distributions show great segmentation and BPE quantification accuracy compared with other state-of-the-art semi-supervised methods. Importantly, our method achieves 11.80 times of quantification accuracy improvement along with 10 times faster, compared...
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research