The ftz upstream element drives late ftz stripes but is not required for regulation of ftz target genes

Dev Biol. 2023 Nov 15:S0012-1606(23)00187-2. doi: 10.1016/j.ydbio.2023.11.004. Online ahead of print.ABSTRACTThe regulation of gene expression in precise, rapidly changing spatial patterns is essential for embryonic development. Multiple enhancers have been identified for the evolving expression patterns of the cascade of Drosophila segmentation genes that establish the basic body plan of the fly. Classic reporter transgene experiments identified multiple cis-regulatory elements (CREs) that are sufficient to direct various aspects of the evolving expression pattern of the pair-rule gene fushi tarazu (ftz). These include enhancers that coordinately activate expression in all seven stripes and stripe-specific elements that activate expression in one or more ftz stripes. Of the two 7-stripe enhancers, analysis of reporter transgenes demonstrated that the upstream element (UPS) is autoregulatory, requiring direct binding of Ftz protein to direct striped expression. Here, we asked about the endogenous role of the UPS by precisely deleting this 7-stripe enhancer. In ftzΔUPS7S homozygotes, ftz stripes appear in the same order as wildtype and all but stripe 4 are expressed at wildtype levels by the end of the cellular blastoderm stage. This suggests that the zebra element and UPS harbor information to direct stripe 4 expression, although previous deletion analyses failed to identify a stripe-specific CRE within these two 7-stripe enhancers. However, the UPS is necessary for late ftz...
Source: Developmental Biology - Category: Biology Authors: Source Type: research
More News: Biology | Genetics