Green tea waste-derived carbon dots: efficient degradation of RhB dye and selective sensing of Cu < sup > 2+ < /sup > ions

Environ Sci Pollut Res Int. 2023 Nov 13. doi: 10.1007/s11356-023-30735-x. Online ahead of print.ABSTRACTHerein, we have synthesized carbon dots (CDs) using a one-step hydrothermal method from green tea waste, a biomass-derived source with high fluorescent properties and excellent solubility in water. The synthesis of CDs was confirmed through a comprehensive range of characterization techniques, including HRTEM (high-resolution transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and EDX (energy-dispersive X-ray spectroscopy). The optical properties of the synthesized CDs were assessed using UV-Vis spectroscopy and fluorescence (FL) spectroscopy. The CDs displayed exceptional stability across a wide pH range and various concentrations. Moreover, these CDs exhibited a photoluminescence quantum yield (PLQY) of 21.6%, indicating their efficiency in emitting fluorescent light upon excitation. The CDs also showcased their prowess in fluorometrically detecting Cu2+ ions, displaying high sensitivity and selectivity. They presented two distinct linear ranges: 0.02 to 50 µM and 50 to 100 µM, with recovery rates ranging from 94.2 to 104.06%. Moreover, under visible light irradiation, the CDs exhibited significant efficiency in the photocatalytic removal of dyes. Specifically, the CDs achieved degradation rate of 97.89% for Rhodamine B (RhB) within a 30-min irradiation period. In the context of RhB adsorption, it is evident that the experimental data align more c...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research