Imaging the binding of MECP2 to DNA [Outlook]

Mutations in the methyl-DNA binding domain of MECP2 cause Rett syndrome; however, distinct mutations are associated with different severity of the disease. Live-cell imaging and single-molecule tracking are sensitive methods to quantify the DNA binding affinity and diffusion dynamics of nuclear proteins. In this issue of Genes & Development, Zhou and colleagues (pp. 883–900) used these imaging methods to quantitatively describe the partial loss of DNA binding resulting from a novel pathological MECP2 mutation with intermediate disease severity. These data demonstrate how single-molecule tracking can advance understanding of the molecular mechanisms connecting MECP2 mutations with Rett syndrome pathophysiology.
Source: Genes and Development - Category: Genetics & Stem Cells Authors: Tags: Development, Chromatin and Gene Expression, Neurobiology Outlook Source Type: research