Hormesis of glyphosate on ferulic acid metabolism and antifungal volatile production in rice root biocontrol endophyte Burkholderia cepacia LS-044

Chemosphere. 2023 Oct 21:140511. doi: 10.1016/j.chemosphere.2023.140511. Online ahead of print.ABSTRACTGlyphosate (GP, N-phosphonomethyl glycine) is one of the most popular organophosphate herbicides widely used in agricultural practices worldwide. There have been extensive reports on the biohazard attributes and hormetic impacts of GP on plant and animal systems. However, the effects of GP on plant growth-promoting microbes and its ecological relevance remain unknown. Here, we show that GP does exert a hormetic impact on Burkholderia cepacia LS-044, a rice (Oryza sativa ssp. japonica cv. Tainung 71) root endophytic isolate. We used increasing doses of ferulic acid (FA, 1-25 mM) and GP (0.5-5 mM) to test the growth and antifungal volatile production in LS-044 by electrochemical, liquid chromatographic, gas chromatographic and spectrophotometric means. GP treatment at a low dose (0.5 mM) increased FA utilization and significantly (P < 0.0001) enhanced antifungal volatile activity in LS-044. Although FA (1 mM) was rapidly utilized by LS-044, no chromatographically detectable utilization of GP was observed at tested doses (0.5-5 mM). LS-044 emitted predominant amounts of tropone in addition to moderate-to-minor amounts of diverse ketones and/or their derivatives (acetone, acetophenone, 2-butanone, 1-propanone, 1-(2-furanyl-ethanone, 1-phenyl-1-propanone and 1-(3-pyridinyl)-1-propanone), d-menthol, 2-methoxy-3-(1-methylethyl)-pyrazine, dimethyl disulfide, pyridine and ammonium...
Source: Chemosphere - Category: Chemistry Authors: Source Type: research