Evaluating β-cryptoxanthin antioxidant properties against ROS-induced macromolecular damages and determining its photo-stability and in-vitro SPF

This study investigated the antioxidant property of β-cryptoxanthin (β-CRX) extracted from Kocuria marina DAGII and its protective effect against macromolecular damages by generating ROS via two models: UV radiation and the Fenton reaction. β-cryptoxanthin exhibited the highest scavenging activity towards hydrogen peroxide radicals with an IC50 value of 38.30  ± 1.13 μg/ml, favoring the hydrogen atom transfer mechanism. The total antioxidant capacity value of 872.0101 ± 1.84 μg BHT/mg β-CRX indicated the cumulative ROS scavenging ability of β-cryptoxanthin. β-cryptoxanthin could protect against ROS-induced lipid peroxidation, protein oxi dation, and DNA damage. The highest lipid peroxidation and protein oxidation inhibition values of β-cryptoxanthin against ROS were 99.371 ± 0.51% and 78.19 ± 0.15%, respectively. β-cryptoxanthin also showed a protective effect in maintaining DNA intactness against ROS-mediated DNA damage . Allium cepa test showed the non-genotoxic nature of β-cryptoxanthin and its protective effect against ROS genotoxic effects. A photo-stability study of β-cryptoxanthin toward UVA and UVB radiation showed a rapid bleaching result of UVB obeying pseudo-zero order kinetics with an average R2 value of 0.9897 and a higher k value ( −6.3 × 10–11 ± 0.2 M/s) than UVA (k value −3.1 × 10–11 ± 0.17 M/s), signifying that UVB is more potent toward photo-degradation. The good SPF value of 23.1737 ± ...
Source: World Journal of Microbiology and Biotechnology - Category: Microbiology Source Type: research