Degradation of 2,4-DCP by immobilized laccase on modified biochar carrier

Bioprocess Biosyst Eng. 2023 Sep 1. doi: 10.1007/s00449-023-02922-0. Online ahead of print.ABSTRACTRape straw was used as the raw material for the biochar in this study, which was then changed using acid, alkali, and magnetic techniques. The laccase was attached using the adsorptions-crosslinking process, and the three modified biochars served as the carriers. The ideal circumstances for laccase immobilization were explored, and both biochar and immobilized laccase's characteristics were examined. The removal of 2,4-dichlorophenol (2,4-DCP) by immobilized laccase from modified biochar and its degradation products were researched. The main conclusions are as follows: the optimal concentration of glutaraldehyde (GLU) was 4%, and the pH was four, and the enzyme dosage was 1.75 mg/mL for the immobilized laccase of acid-modified biochar (SBC@LAC). The optimal concentration of GLU was 5%; the pH was four, and the enzyme dosage was 2 mg/mL for immobilized laccase from alkali-modified biochar (JBC@LAC). The optimal concentration of GLU was 5%; the pH was four, and the enzyme dosage was 1.75 mg/mL for immobilized laccase from magnetically modified biochar (CBC@LAC). SEM images could show the changes in the surface morphology of biochar caused by three modification methods. The BET results demonstrated that acid and magnetic modification increased the specific surface area of biochar, and alkali modification mainly expanded the pore size of biochar. FT-IR and XRD showed that modificati...
Source: Bioprocess and Biosystems Engineering - Category: Biomedical Engineering Authors: Source Type: research