Contribution of HIF-1 α to Heat Shock Response by Transcriptional Regulation of HSF1/HSP70 Signaling Pathway in Pacific Oyster, Crassostrea gigas

In this study, a novel regulatory mechanism that is mediated by hypoxia-inducible factor-1α (HIF-1α) was revealed in Pacific oyster (Crassostrea gigas) in response to heat stress. We identified a total of six HIF-1α genes in the C. gigas genome, of which HIF-1α and HIF-1α-like5 were highly induced under heat stress. We found that the HIF-1α and HIF-1α-like5 genes played critical roles in the heat shock response (HSR) through upregulating the expression of heat shock protein (HSP). Knocking down of HIF-1α via RNA interference (RNAi) inhibited the expression of heat shock factor 1 (HSF1) and HSP70 genes in C. gigas under heat stress. Both HIF-1α and HIF-1α-like5 promoted the transcriptional activity of HSF1 by binding to hypoxia response elements (HREs) within the promoter region. Furthermore, the survival of C. gigas under heat stress was significantly decreased after knocking down of HIF-1α. This work for the first time revealed the involvement of HIF-1α/HSF1/HSP70 pathway in response to heat stress in the oyster and provided an insight into adaptive mechanism of bivalves in the face of ocean warming.PMID:37556001 | DOI:10.1007/s10126-023-10231-6
Source: Marine Biotechnology - Category: Biotechnology Authors: Source Type: research