Optimizing fabrication parameters via Taguchi method for production of high yield hydroxyapatite microsphere scaffolds using Drop ‐on‐Demand inkjet method

AbstractDrop on demand (DOD) inkjet method is a cost-efficient way of producing hydroxyapatite (HAp) microsphere scaffolds with narrow size distribution. However, DOD fabrication parameters may influence the yield and characteristics of the microsphere scaffolds. Testing different permutations and combinations of fabrication parameters is costly and time consuming. Taguchi method could be used as a predictive tool for optimizing the key fabrication parameters to produce HAp microspheres with desired yield and properties, minimizing the number of experimental combinations to be tested. The aim of this study is to investigate the influence of the fabrication parameters on the characteristics of the microspheres formed and determine optimum parameter conditions for producing high yield HAp microsphere scaffolds with the desired properties intended to serve as potential bone substitutes. We aimed to achieve microspheres with high production yield, microsphere size of<230  μm, micropore sizes<1  μm, rough surface morphology and high sphericity. Experiments were conducted using Taguchi method with a L9 orthogonal array at three levels per parameter to determine optimum parameter values for (1) operating pressure, (2) shutter speed duration, (3) nozzle height and (4) CaCl2 concentration. Based on signal-to-noise (S/N) ratio analysis, the identified optimum parameter conditions for operating pressure, shutter speed duration, nozzle height and CaCl2 concentration to be 0.9...
Source: Journal of Biomedical Materials Research Part B: Applied Biomaterials - Category: Materials Science Authors: Tags: RESEARCH ARTICLE Source Type: research