Non-random distribution of macromolecules as driving forces for phenotypic variation.

Non-random distribution of macromolecules as driving forces for phenotypic variation. Curr Opin Microbiol. 2015 May 11;25:49-55 Authors: Jahn M, Günther S, Müller S Abstract Clonal populations employ many strategies of diversification to deal with constraints. All these strategies result in the generation of different phenotypes with diverse functions. Events like cell division are major sources of phenotypic variability due to the unequal partitioning of cellular components. In this review we concentrate on passive and active mechanisms cells employ to distribute macromolecules between their offspring. Different types of segregation are described, addressing both metabolically pertinent molecules such as PHA/PHB or polyphosphates, and components that adversely affect cells by promoting aging, such as damaged protein complexes or extrachromosomal rDNA circles. We also refer to mechanisms generating plasmid copy number (PCN) variation between cells in a population, and how elaborate partitioning systems counteract partitioning errors and ensure equal distribution. Finally, we demonstrate how simple differences in chromosomal copy number determine the fate of a cell, in this case the effect of gene dosage on the onset of sporulation in Bacillus subtilis or on a functional trait in Sinorhizobium meliloti. PMID: 25974411 [PubMed - as supplied by publisher]
Source: Current Opinion in Microbiology - Category: Microbiology Authors: Tags: Curr Opin Microbiol Source Type: research
More News: Genetics | Microbiology