The antimicrobial peptide LK2(6)A(L) exhibits anti-inflammatory activity by binding to the myeloid differentiation 2 domain and protects against LPS-induced acute lung injury in mice

Bioorg Chem. 2023 Jan 18;132:106376. doi: 10.1016/j.bioorg.2023.106376. Online ahead of print.ABSTRACTAcute lung injury (ALI) is a life-threatening disease that is generally attributable to an uncontrolled inflammatory response in the lung, but there is a lack of effective treatments. At present, regulating the inflammatory response has become an important strategy for treating ALI. In the present study, LK2(6)A(L), a peptide derived from the natural antimicrobial peptide temporin-1CEa, inhibited lipopolysaccharide (LPS)-induced expression of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and NO in RAW264.7 cells. Herein, the anti-inflammatory mechanism of LK2(6)A(L) was investigated. The RNA-sequencing (RNA-seq) results showed that LK2(6)A(L) significantly inhibited the TLR4-mediated NF-κB and MAPK signaling pathways in LPS-induced RAW264.7 cells. The results of co-immunoprecipitation (Co-IP), pull-down experiment, confocal laser scanning microscopy, and surface plasmon resonance (SPR) suggested that MD2 was the direct target of LK2(6)A(L). Chemical inhibition of MD2 and its knockdown abolished the anti-inflammatory effect of LK2(6)A(L). Molecular dynamic simulation indicated that LK2(6)A(L) could bind to the active domain of the MD2 hydrophobic pocket via six hydrogen bonds. The truncated peptides were designed based on analysis of the molecular docking of LK2(6)A(L) to MD2. The truncated peptide IS-7 showed strong affinity to MD2 and a remarkable inhibitory e...
Source: Bioorganic Chemistry - Category: Chemistry Authors: Source Type: research
More News: Chemistry | PET Scan | Study