The effects of concurrent bilateral anodal tDCS of primary motor cortex and cerebellum on corticospinal excitability: a randomized, double-blind sham-controlled study

AbstractTranscranial direct current stimulation (tDCS) applied to the primary motor cortex (M1), and cerebellum (CB) can change the level of M1 corticospinal excitability (CSE). A randomized double-blinded crossover, the sham-controlled study design was used to investigate the effects of concurrent bilateral anodal tDCS of M1 and CB (concurrent bilateral a-tDCSM1+CB) on the CSE. Twenty-one healthy participants were recruited in this study. Each participant received anodal-tDCS (a-tDCS) of 2  mA, 20 min in four pseudo-randomized, counterbalanced sessions, separated by at least 7 days (7.11 days ± 0.65). These sessions were bilateral M1 stimulation (bilateral a-tDCSM1), bilateral cerebellar stimulation (bilateral a-tDCSCB), concurrent bilateral a-tDCSM1+CB, and sham stimulation (bilateral a-tDCSSham). Transcranial magnetic stimulation (TMS) was delivered over the left M1, and motor evoked potentials (MEPs) of a contralateral hand muscle were recorded before and immediately after the intervention to measure CSE changes. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) were assessed with paired-pulse TMS protocols. Anodal-tDCS significantly increased CSE after concurrent bilateral a-tDCSM1+CB and bilateral a-tDCSCB. Interestingly, CSE was decreased after bilateral a-tDCSM1. Respective alterations in SICI, LICI, and ICF were seen, including increased SICI and decreased ICF, which indicate th...
Source: Anatomy and Embryology - Category: Anatomy Source Type: research
More News: Anatomy | Cerebellum | Study