Somatosensory deviance detection ERPs and their relationship to analogous auditory ERPs and interoceptive accuracy.

Automatic deviance detection has been widely explored in terms of mismatch responses (mismatch negativity or mismatch response) and P3a components of event-related potentials (ERPs) under a predictive coding framework; however, the somatosensory mismatch response has been investigated less often regarding the different types of changes than its auditory counterpart. It is not known whether the deviance detection responses from different modalities correlate, reflecting a general prediction error mechanism of the central nervous system. Furthermore, interoceptive functions have been associated with predictive coding theory, but whether interoceptive accuracy correlates with deviance detection brain responses has rarely been investigated. Here, we measured ERPs to changes in somatosensory stimuli’s location and intensity and in sound intensity in healthy adults (n = 34). Interoceptive accuracy was measured with a heartbeat discrimination task, where participants indicated whether their heartbeats were simultaneous or non-simultaneous with sound stimuli. We found a mismatch response and a P3a response to somatosensory location and auditory intensity changes, but for somatosensory intensity changes, only a P3a response was found. Unexpectedly, there were neither correlations between the somatosensory location deviance and intensity deviance brain responses nor between auditory and somatosensory brain responses. In addition, the brain responses did not correlate with interocepti...
Source: Journal of Psychophysiology - Category: Psychiatry & Psychology Source Type: research