PKM2 regulates cigarette smoke-induced airway inflammation and epithelial-to-mesenchymal transition via modulating PINK1/Parkin-mediated mitophagy

Toxicology. 2022 Jul 1:153251. doi: 10.1016/j.tox.2022.153251. Online ahead of print.ABSTRACTCigarette smoke (CS) mediates inflammation and epithelial-mesenchymal transition (EMT) in bronchial epithelial cells, contributing to airway remodeling in chronic obstructive pulmonary disease (COPD). Cross-talk between metabolic pathways and cell signaling has emerged as an important focus of research in the field of inflammation. Here, we established in vitro and in vivo models of CS-induced COPD to elucidate the role of pyruvate kinase M2 (PKM2), a glycolytic enzyme, in CS-induced airway remodeling. Exposure to CS significantly increased PKM2 expression in lung tissues of C57BL/6 mice and BEAS-2B cells, which positively related to the levels of airway inflammation and EMT. Administering PKM2 inhibitor shikonin attenuated CS-induced airway inflammation and EMT process. Moreover, knockdown of PKM2 by small-interfering RNA (siRNA) decreased the release of TNF-α and IL-8, ROS and reversed the CS extract (CSE)-induced changes of N-cadherin and E-cadherin in BEAS-2B cells. In CSE-treated cells, we also observed enhancement of PINK1/Parkin-mediated mitophagy, which were decreased by PKM2 siRNA. Furthermore, pretreatment with mitophagy inducer CCCP before CSE stimulation led to increased expressions of both nuclear and cytosolic PKM2, accompanied by reduction of TGF-β-induced factor homeobox 2 (TGIF2), a repressor of TGF-β1/smad pathway and EMT, while PKM2 knockdown restored the express...
Source: Toxicology - Category: Toxicology Authors: Source Type: research