Development and validation of a model to calculate anesthetic agent consumption from inspired and end-expired concentrations, minute ventilation, fresh gas flow and dead space ventilation

AbstractAnesthetic agent consumption is often calculated as the product of fresh gas flow (FGF) and vaporizer dial setting (FVAP). Because FVAP of conventional vaporizers is not registered in automated anesthesia records, retrospective agent consumption studies are hampered. The current study examines how FVAP can be retrospectively calculated from the agent ’s inspired (FIN) and end-expired concentration (FET), FGF, and minute ventilation (MV). Theoretical analysis of agent mass balances in the circle breathing reveals FVAP = [FIN − (dead space fraction * FIN + (1 − dead space fraction) * FET) * (1  − FGF/MV)]/(1-(1 − FGF/MV)). FIN, FET, FGF and MV are routinely monitored, but dead space fraction is unknown. Dead space fraction for sevoflurane, desflurane, and isoflurane was therefore determined empirically from an unpublished data set of 161 patient containing FVAP, FIN, FET, MV and FGF ranging from 0.25 to 8 L/min delivered via an ADU ® (GE, Madison, WI, USA). Dead space fraction for each agent was determined empirically by having Excel’s solver function calculate the value of dead space fraction that minimized the sum of the squared differences between dialed FVAP and predicted FVAP. With dead space fraction known, the model was then prospectively tested for sevoflurane in O2/air using data collected over the course of two weeks with one FLOW-i (Getinge, Solna, Sweden) and one Zeus workstation (Dr äger, Lübeck, Germany). Because both...
Source: Journal of Clinical Monitoring and Computing - Category: Information Technology Source Type: research