Filtered By:
Source: Molecular Neurobiology
Nutrition: Calcium

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 6 results found since Jan 2013.

The Weakened Interaction Between HECTD4 and GluN2B in Ischemic Stroke Promotes Calcium Overload and Brain Injury Through a Mechanism Involving the Decrease of GluN2B and MALT1 Ubiquitination
This study explores the relationship between HECTD4, GluN2B, and MALT1, focusing on their role in brain injury in ischemic stroke. Rats were subjected to 2  h-ischemia followed by 24-h reperfusion to establish an ischemic stroke model. We observed the downregulation of HECTD4 and the upregulation of MALT1. Additionally, an increased GluN2B phosphorylation was concomitant with weakened interactions between HECTD4 and GluN2B, followed by decreased stria tal-enriched protein phosphatase (STEP61). Knockdown of HECTD4 exacerbated hypoxia- or NMDA-induced injury in nerve cells coincident with a decrease in GluN2B and MALT1 ubiq...
Source: Molecular Neurobiology - February 4, 2023 Category: Neurology Source Type: research

TRPC3/6/7 Knockdown Protects the Brain from Cerebral Ischemia Injury via Astrocyte Apoptosis Inhibition and Effects on NF- кB Translocation
AbstractIschemia contributes significantly to morbidity and mortality associated with many common neurological diseases. Calcium overload is an important mechanism of cerebral ischemia and reperfusion (I/R) injury. Despite decades of intense research, an effective beneficial treatment of stroke remains limited; few therapeutic strategies exist to combat the consequences of cerebral ischemia. Traditionally, a “neurocentric” view has dominated research in this field. Evidence is now accumulating that glial cells, especially astrocytes, play an important role in the pathophysiology of cerebral ischemia. Here, we show that...
Source: Molecular Neurobiology - November 7, 2016 Category: Neurology Source Type: research

Adenosine Signaling and Clathrin-Mediated Endocytosis of Glutamate AMPA Receptors in Delayed Hypoxic Injury in Rat Hippocampus: Role of Casein Kinase 2
AbstractChronic adenosine A1R stimulation in hypoxia leads to persistent hippocampal synaptic depression, while unopposed adenosine A2AR receptor stimulation during hypoxia/reperfusion triggers adenosine-induced post-hypoxia synaptic potentiation (APSP) and increased neuronal death. Still, the mechanisms responsible for this adenosine-mediated neuronal damage following hypoxia need to be fully elucidated. We tested the hypothesis that A1R and A2AR regulation by protein kinase casein kinase 2 (CK2) and clathrin-dependent endocytosis of AMPARs both contribute to APSPs and neuronal damage. The APSPs following a 20-min hypoxia...
Source: Molecular Neurobiology - January 7, 2021 Category: Neurology Source Type: research

Preconditioning Exercise in Rats Attenuates Early Brain Injury Resulting from Subarachnoid Hemorrhage by Reducing Oxidative Stress, Inflammation, and Neuronal Apoptosis
AbstractSubarachnoid hemorrhage (SAH) is a catastrophic form of stroke responsible for significant morbidity and mortality. Oxidative stress, inflammation, and neuronal apoptosis are important in the pathogenesis of early brain injury (EBI) following SAH. Preconditioning exercise confers neuroprotective effects, mitigating EBI; however, the basis for such protection is unknown. We investigated the effects of preconditioning exercise on brain damage and sensorimotor function after SAH. Male rats were assigned to either a sham-operated (Sham) group, exercise (Ex) group, or no-exercise (No-Ex) group. After a 3-week exercise p...
Source: Molecular Neurobiology - August 9, 2021 Category: Neurology Source Type: research

Toll-Like Receptor 4 Signaling in Neurons Mediates Cerebral Ischemia/Reperfusion Injury
AbstractIn microglia, Toll-like receptor 4 (TLR4) is well known to contribute to neuroinflammatory responses following brain ischemia. TLR4 is also expressed in neurons and can mediate the conduction of calcium (Ca2+) influx, but the mechanistic link between neuronal TLR4 signaling and brain ischemic injury is still poorly understood. Here, primary neuronal cell cultures from TLR4 knockout mice and mice with conditional TLR4 knockout in glutamatergic neurons (TLR4cKO) were used to establish ischemic models in vitro and in vivo, respectively. We found that deleting TLR4 would reduce the neuronal death and intracellular Ca2+...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research