Filtered By:
Source: Experimental Neurology
Cancer: Neuroblastoma

This page shows you your search results in order of date.

Order by Relevance | Date

Total 5 results found since Jan 2013.

Phenothiazines reduced autophagy in ischemic stroke through endoplasmic reticulum (ER) stress-associated PERK-eIF2 α pathway
CONCLUSION: The combined treatment of C + P plays a crucial role in stroke therapy by inhibiting ER stress-mediated autophagy, thereby leading to reduced apoptosis and increased neuroprotection. Our findings highlight the PERK-eIF2α pathway as a central mechanism through which C + P exerts its beneficial effects. The results from this study may pave the way for the development of more targeted and effective treatments for stroke patients.PMID:37673390 | DOI:10.1016/j.expneurol.2023.114524
Source: Experimental Neurology - September 6, 2023 Category: Neurology Authors: Shuyu Lv Xiaokun Geng Ho Jun Yun Yuchuan Ding Source Type: research

Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1.
Abstract Emerging evidence has suggested a significant role of long non-coding RNAs (lncRNAs) in ischemic stroke by acting as competing endogenous RNAs (ceRNAs) for microRNAs (miRNAs) to regulate certain RNA transcripts. AK038897 is an lncRNA that was reported to be upregulated in rat brains in response to transient focal ischemia. We aimed to investigate the possible regulatory role of AK038897 in ischemic stroke. We detected increased AK038897 and decreased miR-26a-5p levels in mouse brains following middle cerebral artery occlusion/reperfusion (MCAO/R) and in neuro-2A (N2a) neuroblastoma cells following oxygen-...
Source: Experimental Neurology - January 28, 2019 Category: Neurology Authors: Wei R, Zhang L, Hu W, Wu J, Zhang W Tags: Exp Neurol Source Type: research

Neurotrophic and neuroprotective effects of oxyntomodulin in neuronal cells and a rat model of stroke.
In this study, the neuroprotective effect of OXM was first examined in human neuroblastoma (SH-SY5Y) cells and rat primary cortical neurons. GLP-1R and GCGR antagonists, and inhibitors of various signaling pathways were used in cell culture to characterize the mechanisms of action of OXM. To evaluate translation in vivo, OXM-mediated neuroprotection was assessed in a 60-min, transient middle cerebral artery occlusion (MCAo) rat model of stroke. We found that OXM dose- and time-dependently increased cell viability and protected cells from glutamate toxicity and oxidative stress. These neuroprotective actions of OXM were mai...
Source: Experimental Neurology - November 13, 2016 Category: Neurology Authors: Li Y, Wu KJ, Yu SJ, Tamargo IA, Wang Y, Greig NH Tags: Exp Neurol Source Type: research