HMGB1-Like Dorsal Switch Protein 1 Triggers a Damage Signal in Mosquito Gut to Activate Dual Oxidase via Eicosanoids

This study proposed a hypothesis that a damage signal might be specifically induced by pathogens in the gut. The Asian tiger mosquito,Aedes albopictus, encodes dorsal switch protein 1 (Aa-DSP1) as a putative damage-associated molecular pattern (DAMP). Aa-DSP1 was localized in the nucleus of the midgut epithelium in na ïve larvae. Upon infection by a pathogenic bacterium,Serratia marcescens, Aa-DSP1 was released to hemocoel and activated phospholipase A2 (PLA2). The activated PLA2 increased the level of prostaglandin E2 (PGE2) in the gut and subsequently increased Ca2+ signal to produce reactive oxygen species (ROS) via dual oxidase (Duox). Inhibition of Aa-DSP1 via RNA interference or specific inhibitor treatment failed to increase PGE2/Ca2+ signal upon the bacterial infection. Thus, the inhibitors specifically targeting eicosanoid biosynthesis significantly prevented the upregulation of ROS production in the gut and enhanced mosquito mortality after the bacterial infection. However, such inhibitory effects were rescued by adding PGE2. These suggest that Aa-DSP1 plays an important role in immune response of the mosquito gut as a DAMP during pathogen infection by triggering a signaling pathway, DSP1/PLA2/Ca2+/Duox.J Innate Immun
Source: Journal of Innate Immunity - Category: Allergy & Immunology Source Type: research