A computational model of insect campaniform sensilla predicts encoding of forces during walking

Control of forces is essential in both animals and walking machines. Insects measure forces as strains in their exoskeletons via campaniform sensilla (CS). Deformations of cuticular caps embedded in the exoskeleton excite afferents that project to the central nervous system. CS afferent firing frequency (i.e. ‘discharge’) is highly dynamic, correlating with the rate of change of the force. Discharges adapt over time to tonic forces and exhibit hysteresis during cyclic loading. In this study we characterized a phenomenological model that predicts CS discharge, in which discharge is proportional to the instantaneous stimulus force relative to an adaptive variable. In contrast to previous studies of sensory adaptation, our model (1) is nonlinear and (2) reproduces the characteristic power-law adaptation with first order dynamics only (i.e. no ‘fractional derivatives’ are required to explain dynamics). We solve the response of the system analytically in multiple cases and use...
Source: Bioinspiration and Biomimetics - Category: Science Authors: Source Type: research
More News: Science | Study