Intra-skeletal vascular density in a bipedal hopping macropod with implications for analyses of rib histology

AbstractHuman ribs are  thought to be less affected by mechanical strain at the microscopic level than limb bones, implying that rib remodelling better reflects bone physiological homeostasis. Here, we test the hypothesis that rib tissue will be well vascularized and thus enhance susceptibility to metabolic influe nce. An intra-skeletal comparison of bone vascular canal density was conducted using a macropod animal model adapted to bipedal habitual hopping. The right humerus, ulna, radius, femur, tibia, fibula, a mid-thoracic and upper-thoracic rib of an eastern grey kangaroo (Macropus  giganteus) were sectioned at  the midshaft, from which histological sections were prepared. Bone vascularity from a maximum of 12 mm2 of sub-periosteal parallel-fibred and lamellar bone was recorded, resulting in a total of 2047 counted vessels. Vascular canal density data were corrected by cortical width, maximum length, and midshaft circumference robusticity indices computed for each bone. The fibula consistently had the high est vascular canal density, even when corrected for maximum length, cortical width and midshaft circumference robusticities. This was followed by the mid- and upper-thoracic ribs. Vascularity differences between bones were relatively consistent whether vascular canal density was controlled for by co rtical width or midshaft circumference robusticities. Vascular canal density and robusticity indices were also positively and negatively correlated (p &...
Source: Anatomical Science International - Category: Anatomy Source Type: research
More News: Anatomy | Science