Structural insights into a new substrate binding mode of a histidine acid phosphatase from Legionella pneumophila.

Structural insights into a new substrate binding mode of a histidine acid phosphatase from Legionella pneumophila. Biochem Biophys Res Commun. 2021 Jan 12;540:90-94 Authors: Guo Y, Zhou D, Zhang H, Zhang NN, Qi X, Chen X, Chen Q, Li J, Ge H, Teng YB Abstract MapA is a histidine acid phosphatase (HAP) from Legionella pneumophila that catalyzes the hydroxylation of a phosphoryl group from phosphomonoesters by an active-site histidine. Several structures of HAPs, including MapA, in complex with the inhibitor tartrate have been solved and the substrate binding tunnel identified; however, the substrate recognition mechanism remains unknown. To gain insight into the mechanism of substrate recognition, the crystal structures of apo-MapA and the MapAD281A mutant in complex with 5'-AMP were solved at 2.2 and 2.6 Å resolution, respectively. The structure of the MapAD281A/5'-AMP complex reveals that the 5'-AMP fits fully into the substrate binding tunnel, with the 2'-hydroxyl group of the ribose moiety stabilized by Glu201 and the adenine moiety sandwiched between His205 and Phe237. This is the second structure of a HAP/AMP complex solved with 5'-AMP binding in a unique manner in the active site. The structure presents a new substrate recognition mechanism of HAPs. PMID: 33450485 [PubMed - as supplied by publisher]
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Tags: Biochem Biophys Res Commun Source Type: research