Direct non-destructive total reflection X-ray fluorescence elemental determinations in zirconium alloy samples

The development of a direct non-destructive synchrotron-radiation-based total reflection X-ray fluorescence (TXRF) analytical methodology for elemental determinations in zirconium alloy samples is reported for the first time. Discs, of diameter 30   mm and about 1.6   mm thickness, of the zirconium alloys Zr-2.5%Nb and Zircalloy-4 were cut from plates of these alloys and mirror polished. These specimens were presented for TXRF measurements directly after polishing and cleaning. The TXRF measurements were made at the XRF beamline at Elettra synchrotron light source, Trieste, Italy, at two different excitation energies, 1.9   keV and 14   keV, for the determinations of low- and high-Z elements, respectively. The developed analytical methodology involves two complementary quantification schemes, i.e. using either the fundamental parameter method or relative sensitivity based method, allowing quantification of fifteen minor and trace elements with respect to Zr with very good precision and accuracy. In order to countercheck the TXRF analytical results, some samples were analyzed using the DC arc carrier distillation atomic emission spectrometry technique also, which shows an excellent agreement with the results of the TXRF-based methodology developed in this work. The present work resulted in a non-destructive TXRF elemental characterization methodology of metal and alloy samples avoiding the cumbersome dissolution and matrix separation which are   normally required in o...
Source: Journal of Synchrotron Radiation - Category: Physics Authors: Tags: Zircalloy non-destructive analysis TXRF synchrotron low- and high-Z elements research papers Source Type: research
More News: Italy Health | Physics