Age-Related Compensation Mechanism Revealed in the Cortical Representation of Degraded Speech

AbstractOlder adults understand speech with comparative ease in quiet, but signal degradation can hinder speech understanding much more than it does in younger adults. This difficulty may result, in part, from temporal processing deficits related to the aging process and/or high-frequency hearing loss that can occur in listeners who have normal- or near-normal-hearing thresholds in the speech frequency range. Temporal processing deficits may manifest as degraded neural representation in peripheral and brainstem/midbrain structures that lead to compensation, or changes in response strength in auditory cortex. Little is understood about the process by which the neural representation of signals is improved or restored by age-related cortical compensation mechanisms. Therefore, we used vocoding to simulate spectral degradation to compare the behavioral and neural representation of words that contrast on a temporal dimension. Specifically, we used the closure duration of the silent interval between the vowel and the final affricate /t ∫/ or fricative /ʃ/ of the words DITCH and DISH, respectively. We obtained perceptual identification functions and electrophysiological neural measures (frequency-following responses (FFR) and cortical auditory-evoked potentials (CAEPs)) to unprocessed and vocoded versions of these words in young normal-hearing (YNH), older normal- or near-normal-hearing (ONH), and older hearing-impaired (OHI) listeners. We found that vocoding significantly reduce...
Source: JARO - Journal of the Association for Research in Otolaryngology - Category: ENT & OMF Source Type: research
More News: ENT & OMF