Molecules, Vol. 25, Pages 3118: 5-Aryl-2-(3,5-dialkyl-4-hydroxyphenyl)-4,4-dimethyl-4H-imidazole 3-Oxides and Their Redox Species: How Antioxidant Activity of 1-Hydroxy-2,5-dihydro-1H-imidazoles Correlates with the Stability of Hybrid Phenoxyl –Nitroxides

Molecules, Vol. 25, Pages 3118: 5-Aryl-2-(3,5-dialkyl-4-hydroxyphenyl)-4,4-dimethyl-4H-imidazole 3-Oxides and Their Redox Species: How Antioxidant Activity of 1-Hydroxy-2,5-dihydro-1H-imidazoles Correlates with the Stability of Hybrid Phenoxyl–Nitroxides Molecules doi: 10.3390/molecules25143118 Authors: Svetlana A. Amitina Elena V. Zaytseva Natalya A. Dmitrieva Alyona V. Lomanovich Natalya V. Kandalintseva Yury A. Ten Ilya A. Artamonov Alexander F. Markov Dmitrii G. Mazhukin Cyclic nitrones of the imidazole series, containing a sterically hindered phenol group, are promising objects for studying antioxidant activity; on the other hand, they can form persistent hybrid phenoxyl–nitroxyl radicals (HPNs) upon oxidation. Here, a series of 5-aryl-4,4-dimethyl-4H-imidazole 3-oxides was obtained by condensation of aromatic 2-hydroxylaminoketones with 4-formyl-2,6-dialkylphenols followed by oxidation of the initially formed N-hydroxy derivatives. It was shown that the antioxidant activity of both 1-hydroxy-2,5-dihydroimidazoles and 4H-imidazole 3-oxides increases with a decrease in steric volume of the alkyl substituent in the phenol group, while the stability of the corresponding HPNs generated from 4H-imidazole 3-oxides reveals the opposite tendency.
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research