Advanced Deep Learning Techniques Applied to Automated Femoral Neck Fracture Detection and Classification

AbstractTo use deep learning with advanced data augmentation to accurately diagnose and classify femoral neck fractures. A retrospective study of patients with femoral neck fractures was performed. One thousand sixty-three AP hip radiographs were obtained from 550 patients. Ground truth labels of Garden fracture classification were applied as follows: (1) 127 Garden I and II fracture radiographs, (2) 610 Garden III and IV fracture radiographs, and (3) 326 normal hip radiographs. After localization by an initial network, a second CNN classified the images as Garden I/II fracture, Garden III/IV fracture, or no fracture. Advanced data augmentation techniques expanded the training set: (1) generative adversarial network (GAN); (2) digitally reconstructed radiographs (DRRs) from preoperative hip CT scans. In all, 9063 images, real and generated, were available for training and testing. A deep neural network was designed and tuned based on a 20% validation group. A holdout test dataset consisted of 105 real images, 35 in each class. Two class prediction of fracture versus no fracture (AUC 0.92): accuracy 92.3%, sensitivity 0.91, specificity 0.93, PPV 0.96, NPV 0.86. Three class prediction of Garden I/II, Garden III/IV, or normal (AUC 0.96): accuracy 86.0%, sensitivity 0.79, specificity 0.90, PPV 0.80, NPV 0.90. Without any advanced augmentation, the AUC for two-class prediction was 0.80. With DRR as the only advanced augmentation, AUC was 0.91 and with GAN only AUC was 0.87. GANs a...
Source: Journal of Digital Imaging - Category: Radiology Source Type: research