Synthesis and characterizations of BiOCl nanosheets with controlled particle growth for efficient organic dyes degradation

In this report, we considered the control of electron-hole separation, oxygen vacancy formation, particle size, and morphology together is supposed to boost the catalytic activity of the materials. Hence, BiOCl photocatalysts were synthesized by a systematic control of particle growth along reactive (001) plane using simple hydrolysis method in KCl saturated aqueous solution with simultaneous UV light treatment. The materials were characterized using different techniques and the photocatalytic activities were evaluated for degradation of different kinds of organic dyes. 20-BiOCl prepared with 20 mmol KCl showed 99.9% RhB degradation within 10 min of visible light irradiation. From kinetics data, 20-BiOCl showed 7 and 3 times higher rates on RhB dye degradation than untreated 20-BiOCl and unsaturated 5-BiOCl, respectively. Furthermore, 20-BiOCl catalyst also exhibited almost complete degradation of RhB, MO, and MB dyes under UV light irradiation. Supper oxide (O2.−) and hydroxyl (OH) radicals are identified as the main active species on the degradation of RhB dye under visible light irradiation. Both KCl saturation and UV light treatment during synthesis of BiOCl catalysts play a crucial role to the extraordinary photocatlytic activities.Graphical abstract
Source: Journal of Industrial and Engineering Chemistry - Category: Chemistry Source Type: research