Pyrolysate composition and silylation efficiency in analytical pyrolysis of glucans as a function of pyrolysis time

Publication date: Available online 30 November 2019Source: Journal of Analytical and Applied PyrolysisAuthor(s): Marco Mattonai, Erika RibechiniAbstractThe pyrolytic behaviour of two oligosaccharides – cellobiose and cellohexose – was studied using reactive pyrolysis-GC/MS with in situ hexamethyldisilazane derivatisation. Pyrolysis was conducted in a sealed vessel at various times ranging from 0.2 to 60 min. Semi-quantitative calculations were carried out on integrated peak areas to obtain information on derivatisation efficiency and composition of the pyrolysate as a function of pyrolysis time. The results were compared with a previous work by us in which glucose and cellulose were studied with the same procedure. The relative areas of anhydrosugars were found to decrease with the increase of the degree of polymerisation of the substrate, while the derivatisation efficiency showed an opposite trend. The results were explained by considering the role of both the sealed environment and free water molecules released during the pyrolysis process. We hypothesised that higher amounts of water were released from glucans with low degrees of polymerization, hindering both secondary pyrolysis reactions and derivatisation efficiency. Glucans with high degrees of polymerization, on the contrary, showed high signals of secondary pyrolysis products, consistent with a lower amount of water and the formation of a liquid phase.
Source: Journal of Analytical and Applied Pyrolysis - Category: Chemistry Source Type: research