Sensors, Vol. 19, Pages 4083: Measurement of Three-Dimensional Structural Displacement Using a Hybrid Inertial Vision-Based System

Sensors, Vol. 19, Pages 4083: Measurement of Three-Dimensional Structural Displacement Using a Hybrid Inertial Vision-Based System Sensors doi: 10.3390/s19194083 Authors: Xinxiang Zhang Yasha Zeinali Brett A. Story Dinesh Rajan Accurate three-dimensional displacement measurements of bridges and other structures have received significant attention in recent years. The main challenges of such measurements include the cost and the need for a scalable array of instrumentation. This paper presents a novel Hybrid Inertial Vision-Based Displacement Measurement (HIVBDM) system that can measure three-dimensional structural displacements by using a monocular charge-coupled device (CCD) camera, a stationary calibration target, and an attached tilt sensor. The HIVBDM system does not require the camera to be stationary during the measurements, while the camera movements, i.e., rotations and translations, during the measurement process are compensated by using a stationary calibration target in the field of view (FOV) of the camera. An attached tilt sensor is further used to refine the camera movement compensation, and better infers the global three-dimensional structural displacements. This HIVBDM system is evaluated on both short-term and long-term synthetic static structural displacements, which are conducted in an indoor simulated experimental environment. In the experiments, at a 9.75 m operating distance between the monitoring camera and the structure that is being moni...
Source: Sensors - Category: Biotechnology Authors: Tags: Article Source Type: research