ION cyclotron resonance: Geomagnetic strategy for living systems?

ION cyclotron resonance: Geomagnetic strategy for living systems? Electromagn Biol Med. 2019 Apr 27;:1-6 Authors: Liboff AR Abstract Except for relatively few polarity reversals the magnitude of the magnetic dipole moment of the earth has remained constant since life first began, allowing evolutionary processes to integrate the geomagnetic field (GMF) into several biological functions. One of these, bearing the classical signature of an ion cyclotron resonance (ICR)-like interaction, results in biological change associated with enhanced proton transport. The wide range of cation masses over which this effect is found suggest a fundamental biological dependence on the GMF, one that functions equally well for electric as well as magnetic fields. Such generalization of ICR requires two things: transparency of tissues to the GMF and suitably tuned ELF resonant magnetic or electric fields. To complement the widely reported ICR responses to applied AC magnetic fields, we hypothesize the existence of weak endogenous ICR electric field oscillations within the cell. This equivalence implies that even in the absence of applied AC magnetic fields, biological systems will exhibit intrinsic GMF-dependent ion cyclotron resonance intracellular interactions. Many ICR effects that have been reported appear as antagonist pairs suggesting that the characteristics of the GMF have not only been incorporated into the genome but also appear to function in ...
Source: Electromagnetic Biology and Medicine - Category: Physics Tags: Electromagn Biol Med Source Type: research
More News: Biology | Physics