Introduction of the harpinXooc-encoding gene hrf2 in soybean enhances resistance against the oomycete pathogen Phytophthora sojae.

Introduction of the harpinXooc-encoding gene hrf2 in soybean enhances resistance against the oomycete pathogen Phytophthora sojae. Transgenic Res. 2019 Mar 04;: Authors: Niu L, Yang J, Zhang J, He H, Xing G, Zhao Q, Guo D, Sui L, Zhong X, Yang X Abstract Phytophthora root and stem rot (PRR) caused by an oomycete pathogen Phytophthora sojae is one of the most devastating and widespread diseases throughout soybean-producing regions worldwide. The diversity and variability of P. sojae races make effective control of the pathogen challenging. Here, we introduced an elicitor of plant defense response, the harpinXooc-encoding hrf2 gene from the rice bacterial pathogen Xanthomonas oryzae pv. oryzicola into soybean and evaluated resistance to P. sojae infection. Molecular analysis confirmed the integration and expression of hrf2 in the transgenic soybean. After inoculation with P. sojae, non-transformed control (NC) plants exhibited typical PRR symptoms, including necrotic and wilting leaves, and plant death, whereas most of the transgenic plants showed slightly chlorotic leaves and developed normally. Through T3 to T5 generations, the transgenic events displayed milder disease symptoms and had higher survival rates compared to NC plants, indicating enhanced and stable resistance to P. sojae infection, whereas without P. sojae inoculation, no significant differences in agronomic traits were observed between the transgenic and non-transformed...
Source: Transgenic Research - Category: Genetics & Stem Cells Authors: Tags: Transgenic Res Source Type: research
More News: Genetics