Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure

Publication date: March 2019Source: Results in Physics, Volume 12Author(s): Zhiying Zhang, Hao Tang, Dongpeng Cheng, Jikang Zhang, Yatao Chen, Xin Shen, Hongliang YuAbstractStrain coupling with ferromagnetism and ferroelectricity plays an important role in the development of multiferroic metal-organic frameworks (MOFs) with strong magnetoelectric coupling, but the underlying mechanisms have not been well understood. Strain coupling and dynamic relaxation in multiferroic MOF with perovskite structure [(CH3)2NH2][Mn(HCOO)3] were investigated using X-ray diffraction (XRD), Raman spectroscopy, Infra-red (IR) spectroscopy, differential scanning calorimetry (DSC), magnetic measurements and dynamic mechanical analysis (DMA). DSC results showed peaks at 183 K and 190 K at the rate of 5 K/min during cooling and heating processes, respectively. Magnetic measurements showed magnetic transition at ∼8.5 K at the heating rate of 2 K/min. Temperature and frequency dependences of elastic properties studied by DMA at frequencies of 0.5 Hz–10 Hz between 140 K and 300 K at heating rate of 2 K/min indicated that the minimum in storage modulus and the maximum in loss modulus and loss factor occurred near 190 K. The peak height of loss modulus and loss factor decreased at higher frequency, and the peak temperature was independent of frequency, showing the features of first-order phase transition. Near 190 K, paraelectric to ferroelectric phase transition triggered by di...
Source: Results in Physics - Category: Physics Source Type: research
More News: Organic | PET Scan | Physics