An Intelligent Sleep Apnea Classification System Based on EEG Signals

AbstractSleep Apnea is a sleep disorder which causes stop in breathing for a short duration of time that happens to human beings and animals during sleep. Electroencephalogram (EEG) plays a vital role in detecting the sleep apnea by sensing and recording the brain ’s activities. The EEG signal dataset is subjected to filtering by using Infinite Impulse Response Butterworth Band Pass Filter and Hilbert Huang Transform. After pre-processing, the filtered EEG signal is manipulated for sub-band separation and it is fissioned into five frequency bands such as Ga mma, Beta, Alpha, Theta, and Delta. This work employs features such as energy, entropy, and variance which are computed for each frequency band obtained from the decomposed EEG signals. The selected features are imported for the classification process by using machine learning classifiers including Support Vector Machine (SVM) with Kernel Functions, K-Nearest Neighbors (KNN), and Artificial Neural Network (ANN). The performance measures such as accuracy, sensitivity, and specificity are computed and analyzed for each classifier and it is inferred that the Support Vector Machine based classific ation of sleep apnea produces promising results.
Source: Journal of Medical Systems - Category: Information Technology Source Type: research