Time-invariant biological networks with feedback loops: structural equation models and structural identifiability

In this study, the structural identifiability analysis problem of time-invariant linear structural equation models (SEMs) with feedback loops is addressed, resulting in a general and efficient solution. The key idea is to combine Mason's gain with Wright's path coefficient method to generate identifiability equations, from which identifiability matrices are then derived to examine the structural identifiability of every single unknown parameter. The proposed method does not involve symbolic or expensive numerical computations, and is applicable to a broad range of time-invariant linear SEMs with or without explicit latent variables, presenting a remarkable breakthrough in terms of generality. Finally, a subnetwork structure of the C. elegans neural network is used to illustrate the application of the authors' method in practice.
Source: IET Systems Biology - Category: Biology Source Type: research
More News: Biology | Study