Microstructure and hardness of SAC305 and SAC305-0.3Ni solder on Cu, high temperature treated Cu, and graphene-coated Cu substrates

In this study, SAC305 and SAC305-0.3Ni solder balls were soldered onto Cu, high temperature treated Cu (H-Cu) and graphene coated Cu (G-Cu) substrates, respectively. The microstructure, the interfacial reaction, and the hardness of the solder joints were investigated. The interfacial intermetallic compound (IMC) is Cu6Sn5 in the solder joints of SAC305/Cu, SAC305/H-Cu, and SAC305/G-Cu. With the addition of 0.3 wt% Ni in the SAC305 solder, the interfacial IMC on Cu, H-Cu, and G-Cu transforms from Cu6Sn5 into (Cu, Ni)6Sn5. The thickness of Cu6Sn5 and (Cu, Ni)6Sn5 is the lowest on G-Cu substrate. Meanwhile, smooth (Cu, Ni)6Sn5 interfacial IMC layers are obtained in SAC305-0.3Ni/H-Cu and SAC305-0.3Ni/G-Cu solder joints. Both the SAC305 and the SAC305-0.3Ni solder bulks have the highest β-Sn content and the lowest concentration of eutectic phases on G-Cu substrate. Consequently, the hardness of the solder bulks on G-Cu is lower than that on the other two kinds of substrates.
Source: Results in Physics - Category: Physics Source Type: research
More News: Physics | Study